A Proof of Jakobson’s Theorem via Yoccoz puzzles and the measure of stochastic parameters

Orateur:
Mitsuhiro Shishikura
Localisation: Université de Kyoto, Japon
Type: Séminaire COOL
Site: Hors LAMA , IHP
Salle:
5
Date de début:
13/09/2013 - 11:15
Date de fin:
13/09/2013 - 11:15

Jakobson's theorem says that a certain family of unimodal maps of the interval has a positive measure set of ``stochastic'' parameters for which there exist invariant measure absolutely continuous with respect to the Lebesgue measure. Luzzatto-Takahasi gave an effective estimate on the measure, but it was like $10^{-5000}$ for the quadratic family. We will present an alternative approach to Jakobson's theorem using complex extension and Yoccoz puzzle/parapuzzle techniques, and try to improve the estimates on the measure of stochastic parameters.