Thomas RICHARD
- Fiche
- Publications
Nom: |
RICHARD
|
|
Prénom: |
Thomas
|
|
Site: | UPEC | |
Bureau: | P3 421 | |
Téléphone: | +33 1 45 17 16 51 | |
Situation: | ||
Statut: | ||
Équipe de recherche: | ||
Courriel: |
thomas.richard@u-pec.fr
|
|
Page personnelle: | ||
- Strengthened injectivity radius bounds for manifolds with positive scalar curvature
- Small Two Spheres in Positive Scalar Curvature, Using Minimal Hypersurfaces
- T. Richard - Advanced basics of Riemannian geometry 4
- Stratified spaces and synthetic Ricci curvature bounds
- T. Richard - Advanced basics of Riemannian geometry 3
- T. Richard - Advanced basics of Riemannian geometry 1
- T. Richard - Advanced basics of Riemannian geometry 2
- Contextual metrics. A mathematical definition for a comprehensive approach of geographical distances
- On the 2-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$
-
Canonical smoothing of compact Aleksandrov surfaces via Ricci flow
auteurThomas RichardAnnales Scientifiques de l'École Normale Supérieure 51 (2018) 263-279
- Stability of nonnegative isotropic curvature under continuous deformations of the metric
- T. Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 5)
- T. Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 3)
- T. Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 2)
-
Positive isotropic curvature and self-duality in dimension 4
auteurThomas Richard, Harish SeshadriManuscripta mathematica 149 (2016) 443 - 457
- T. Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 4)
- Non-coercive Ricci flow invariant curvature cones
- Lower bounds on Ricci flow invariant curvatures and geometric applications.
- Canonical smoothing of compact Alexandrov surfaces via Ricci flow
- Flot de Ricci sans borne supérieure sur la courbure et géométrie de certains espaces métriques
-
Ricci flow of non-collapsed 3-manifolds: Two applications
auteurThomas RichardComptes Rendus. Mathématique 349 (2011) 567 - 569