Vincent MILLOT
- Fiche
- Publications
Nom: |
MILLOT
|
|
Prénom: |
Vincent
|
|
Site: | UPEC | |
Bureau: | P3 426 | |
Téléphone: | +33 1 45 17 16 54 | |
Situation: | ||
Statut: | ||
Équipe de recherche: | ||
Courriel: |
vincent.millot@u-pec.fr
|
|
Page personnelle: | ||
- On the convergence of critical points of the Ambrosio-Tortorelli functional
- A note on the one-dimensional critical points of the Ambrosio-Tortorelli functional
-
Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers
auteurFederico Dipasquale, Vincent Millot, Adriano Pisante(2021)
-
TORUS-LIKE SOLUTIONS FOR THE LANDAU-DE GENNES MODEL. PART II: TOPOLOGY OF S1-EQUIVARIANT MINIMIZERS
auteurVincent Millot, Federico Dipasquale, Adriano Pisante(2021)
- Partial regularity for fractional harmonic maps into spheres
- TORUS-LIKE SOLUTIONS FOR THE LANDAU-DE GENNES MODEL. PART I: THE LYUKSYUTOV REGIME
- A Ginzburg-Landau model with topologically induced free discontinuities
- Minimizing 1/2-harmonic maps into spheres
- ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION AND STATIONARY NONLOCAL MINIMAL SURFACES
- MINIMIZING FRACTIONAL HARMONIC MAPS ON THE REAL LINE IN THE SUPERCRITICAL REGIME
- ON A PHASE FIELD APPROXIMATION OF THE PLANAR STEINER PROBLEM: EXISTENCE, REGULARITY, AND ASYMPTOTIC OF MINIMIZERS
- On sets minimizing their weighted length in uniformly convex separable Banach spaces
- On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres
- Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements
- Contributions au calcul variationnel géométrique et applications
- Isoperimetry and stability properties of balls with respect to nonlocal energies
-
Homogenization of variational problems in manifold valued Sobolev spaces
auteurJean-François Babadjian, Vincent MillotESAIM: Control, Optimisation and Calculus of Variations 16 (2010) 833-855
-
Homogenization of variational problems in manifold valued BV-spaces
auteurJean-François Babadjian, Vincent MillotCalculus of Variations and Partial Differential Equations 36 (2009) 7-47
- Γ–CONVERGENCE OF 2D GINZBURG-LANDAU FUNCTIONALS WITH VORTEX CONCENTRATION ALONG CURVES
- Some variational problems arising in condensed matter physics