Global well-Posedness in spatially Critical Besov space for the Boltzmann equation

XU Jiang
Localisation: Université d'aéronautique et d'astronautique de Nanjing, Chine
Type: Groupe de travail équations aux dérivées partielles
Site: UPEC
P1 P15
Date de début:
17/11/2016 - 14:00
Date de fin:
17/11/2016 - 14:00

The unique global strong solution in the Chemin–Lerner type space to the Cauchy problem on the Boltzmann equation for hard potentials is constructed in a perturbation framework. Such a solution space is of critical regularity with respect to the spatial variable, and it can capture the intrinsic properties of the Boltzmann equation. For the proof of global well-posedness, we develop some new estimates on the nonlinear collision term through the Littlewood–Paley theory.