"Inégalités fonctionnelles et théorèmes limites sur l'espace des configurations."

Orateur:
Type: Thèse
Site: Hors LAMA
Date de début:
03/12/2018 - 15:30
Date de fin:
03/12/2018 - 17:00

Résumé :
Nous présentons des inégalités fonctionnelles pour les processus ponctuels. Nous prouvons une inégalité de Sobolev logarithmique modifiée, une inégalité de Stein et un théorème du moment quatrième sans terme de reste pour une classe de processus ponctuels qui contient les processus binomiaux et les processus de Poisson. Les preuves reposent sur des techniques inspirées de l'approche de Malliavin-Stein et du calcul avec l'opérateur $Gamma$ de Bakry-Émery. Pour mettre en œuvre ces techniques nous développons une analyse stochastique pour les processus ponctuels. Plus généralement, nous mettons au point une théorie d'analyse stochastique sans hypothèse de diffusion. Dans le cadre des processus de Poisson ponctuels, l'inégalité de Stein est généralisé pour étudier la convergence stable vers des limites conditionnellement gaussiennes. Nous appliquons ces résultats pour approcher des processus Gaussiens par des processus de Poisson composés et pour étudier des graphes aléatoires.
Nous discutons d'inégalités de transport et de leur conséquence en terme de concentration de la mesure pour les processus binomiaux dont la taille de l'échantillon est aléatoire.
Sur un espace métrique mesuré quelconque, nous présentons un développement de la concentration de la mesure qui prend en compte l'agrandissement parallèle d'ensembles disjoints. Cette concentration améliorée donne un contrôle de toutes les valeurs propres du Laplacien métrique. Nous discutons des liens de cette nouvelle notion avec une version de la courbure de Ricci qui fait intervenir le transport à plusieurs marginales.